

VANTIQ Accelerators VANTIQ.com
Copyright © 2020 VANTIQ. All Rights Reserved.

VANTIQ Accelerators
VANTIQ.com

VANTIQ Back-To-Work Accelerator
Developer Guide
Last Revision: May 14, 2020

Page 2
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Contents
About ... 3

How to Use This Document ... 3

Back-To-Work Accelerator Features .. 4

Data Types ... 4

Asset to Space Assignment .. 6

Connect External Data Sources ... 6

HTTP/REST/WebSockets .. 7

REST ... 7

WSS .. 7

MQTT/AMQP ... 8

Webhooks or Data Pulls .. 8

Extension Sources .. 9

Viewing Incoming Data .. 9

App Builder .. 9

Rules .. 11

Procedures .. 14

Client Builder Procedures .. 14

App Builder Procedures ... 16

Dashboards and Issues .. 16

Other Procedures .. 17

Collaborations ... 18

Visualization Plugins .. 20

Appendix ... 22

Changing Existing Schema’s ... 22

Code Examples .. 22

Dashboard for Hand Sanitizer ... 22

Update Collaboration with Latest Location ... 24

Page 3
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

About
VANTIQ Accelerators are working applications that are designed to be imported into the VANTIQ platform as a
new project and then customized by users who are looking to create applications with a similar purpose. The
benefit of using an accelerator is starting off with an application that has a completed code base to bootstrap
a new project being undertaken. Although accelerators are complete working applications, they are not
intended to be used as-is, rather they are intended to speed up development of a new application by
providing a completed and working set of base components and functionality to build upon and customize.

How to Use This Document
This document is intended for VANTIQ developers who want to customize the Back-To-Work Accelerator to
create new functionality or modify existing features. A pre-requisite of using this document is an
understanding of the VANTIQ platform. Recommended skills for VANTIQ developers are Javascript and SQL
programming knowledge, but anyone with a background in software programming will be able to use this
document.

It is not required but it is recommended to first read the Back-To-Work Accelerator User Guide to provide
context to how the internal VANTIQ components are implemented and displayed from the end-user point of
view.

The full documentation for the VANTIQ platform is available here:
https://dev.vantiq.com/docs/system/ide/index.html

For any readers who are not yet familiar with VANTIQ development, it is recommended that you first run
through the Tutorials and then return to this guide to customize the Back-To-Work Accelerator. The Tutorials
can be found at:
https://dev.vantiq.com/docs/system/tutorials/tutorial/index.html

This document will cover the following major topics:

• Connecting external data sources to your VANTIQ namespace.
• Creating new Client Builder pages to display reports, sensor readings and other visualizations.
• All the Procedures used by the Client Builder that can also be used as API’s for external web or mobile

clients.
• Setting up new Apps to process and analyze new sensor types.
• Creating your own Collaborations that include interactive user facing workflows.
• Adding plugins for specific third-party hardware vendors.
• A discussion on how to incorporate the Catalog system and why/when you would use it.

Code examples will be provided where relevant and additional information will be available on the
accelerators GitHub page.

https://github.com/Vantiq/vantiq-blueprints

Page 4
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Back-To-Work Accelerator Features
The Back-To-Work Accelerator allows the user to model an organization’s workplace by creating a digital twin
of that workplace. A digital twin is a computerized representation of a real-life physical object, in this case, an
internal space within a building and the assets contained within those spaces. Digital twins are often
connected to sensors, cameras and other data sources to provide real-time displays of the status a particular
object or space by capturing streams of data from these sources, analyzing the incoming data and monitoring
for anomalies.

The value of the VANTIQ Back-to-Work Accelerator is to allow developers to quickly create their own unique
models of their workplaces without spending a lot of time designing the user facing elements and
visualizations. A complete set of user interfaces is provided along with the ability to create and define custom
data schema’s for sensors and devices.

Many of the assets in the accelerator such as Types, Procedures, and Client Builder pages will work right away
with any data sources without requiring any additional development work. A user will need to define the
buildings, rooms, assets and sensors through the Back-To-Work client.

The Apps and Collaborations will need to be modified to support your data and your user facing workflows.

Data Types
Types in the Back-To-Work Accelerator are organized into a hierarchy of data structures. These are arranged
from the user perspective in a top-down order as shown in the image, but the Types have schema definitions
that work in reverse to start at the bottom and work your way up. The child records will reference the parent
record by its unique id property. The default configuration stores references in the following structure.

Sensors à Assets
Assets à Floors
Spaces à Floors
Floors à Buildings
Buildings à Organization

There is a smaller secondary hierarchy for users and groups represented with a one-to-many relationship
between Personnel and Roles.

Personnel à Roles

Page 5
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Figure 1 - Back-To-Work data structure hierarchy

An incoming event, such as a sensor reading, provides the initial context for data lookups. The sensor event
will have a sensor id. From the sensor reading we can work our way up with a series of queries until reaching
the Organization.

Here is an example query starting with a simple reading from a temperature sensor.

{
temp: 99,
sensorid: “t1001”,
time: 1588264119

}

Figure 2 - Incoming Sensor Reading

Page 6
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Using the incoming sensorid as the starting point here is how to query from Sensor to Organization:

Asset to Space Assignment
The relationship between assets, spaces and floors is different because an asset is not assumed to be in a
fixed location the same way that a space is. A sensor may move to a different room or floor but your kitchen
isn’t likely to change its location. An asset may be in motion all the time and it may move between floors or
even between different buildings. In order to identify the correct space for the asset, the location is always
calculated and the closest space is selected based upon distance.

In the above select statements, notice that both assets and floors refer to the floorid instead of an asset
referencing a space directly. This is due to how the space is calculated based on the location of the asset and
with each sensor reading, the closest space will be identified. For more details on location tracking, please
refer to the code example in the Appendix on the procedure app.updateSensorAndAssetLocation, which
shows how to update an asset’s current location from the latest sensor reading.

Connect External Data Sources
One of the first and most important activities to perform when setting up the Back-To-Work Accelerator is
getting connected to external data sources. External sources may be sensors, webhooks, cameras or extension
sources. Extension sources will cover all the external connectors not built directly into the VANTIQ platform
and includes examples like JDBC connections, OPC-UA, Object Recognition (streaming video) and others. There
are multiple ways to connect sensors and external devices to the VANTIQ platform and this document will not
cover each one in detail. Instead please refer to the Enterprise Connectors Reference Guide.

Incoming sensors will each have their own formats and schemas. The sensor’s Type will store the sensor data
in an unstructured object called data. This allows any sensor value to be stored regardless of how data is
structured. The sensor’s Type will only store the most recent reading. If there is a need to store the full history
of all the sensor readings it is necessary to create a new Type to store the timeseries of readings.

//Query the sensor record
SELECT ONE * from sensors AS sensor WHERE id == sensorid

//Get the Asset for that sensor
SELECT ONE * from assets AS asset WHERE id == sensor.assetid

//Get the spaces for that asset
SELECT ONE * from spaces AS space WHERE floorid == asset.floorid

//Get the floors for the asset
SELECT ONE * from floors AS floor WHERE floorid == asset.floorid

//Get the building for the floor
SELECT ONE * from buildings AS building WHERE id == floor.buildingid

//Get the organization for the building
SELECT ONE * from organization AS org WHERE id == building. organizationid

Page 7
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Note: If the timeseries data is expected to be very large, it is recommended that the Type be setup to store the
sensor history using a recommended format for timeseries data (boxed into chunks based on
second/minute/hour/day) or that an external database (S3, InfluxDB, ect) is used to store the full history of the
sensor.

Here is an overview of some of the recommended ways to connect data streams to the VANTIQ platform. Not
all devices can be configured to connect directly to VANTIQ and in those cases using Webhooks or even pulling
the data via REST calls might be necessary.

HTTP/REST/WebSockets
The easiest method to send data into VANTIQ is to have the device, be it a sensor or gateway, publish to a
VANTIQ topic over an HTTP connection. To do this, a user will need a URL endpoint and an access token.
Nothing is required on the developer side other than generating an access token. No data definitions need to
be known or configured in advance as topic names can be used on demand and do not require any setup in
advance.

It is also possible to post directly to a Type or even a Procedure, but these will require knowing the sensor
structure ahead of time. It is much quicker and easier to use the pub/sub system to receive data streams
which then provides the opportunity to process, enrich, filter, or transform the sensor reading before it is
stored.

REST
REST calls are very common and will POST the sensor readings to a URI endpoint with an authorization and a
JSON formatted body that contains the data payload. Authentication can be provided directly in the URI or
through an Authorization header.

The body of the POST should be in JSON format.

WSS
VANTIQ provides a secure WebSocket interface that can be used to stream data into the VANTIQ platform.
WebSockets differ from REST in that they open a connection to the VANTIQ platform that remains active while
streaming data while REST opens a new connection to the VANTIQ platform with every reading. This allows
data transfer over WebSockets to be very fast and these should be used in any situations where high speed
and high volume are expected.

Token in URI:
https://dev.vantiq.com/api/v1/resources/topics//MyDataStream?token=<YOUR-ACCESS-TOKEN>

Token in Header:
https://dev.vantiq.com/api/v1/resources/topics//MyDataStream
Authorization: Bearer <YOUR-ACCESS-TOKEN>
Content-Type: application/json

Page 8
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

To use WSS connections, you will need an authentication token. Publishing to a topic will require resource
parameters that are passed into the WebSocket when it is initially opened that includes the initial
authentication resources:

Please refer to the VANTIQ API Reference Guide for detailed information.

MQTT/AMQP
MQTT is an increasingly popular protocol used by IoT devices to stream information to an end point. AMQP is
a similar protocol but is not as common as MQTT. Both are supported in the VANTIQ platform and require a
broker that sits between the VANTIQ platform and the device. The VANTIQ platform only provides the client-
side subscriber libraries to ingest MQTT/AMQP data streams.

A Source has to be added to provide the VANTIQ platform with the details of the brokers location and the
topic to which to subscribe. An MQTT connection for example might look like this:

tcp://public.vantiq.com:1883/cmp/gateway

Username and password credentials can be supplied in the source configuration.

Webhooks or Data Pulls
Webhooks and data pulls are less ideal for use with the VANTIQ platform. In these cases, the sensors are
streaming to another location first, perhaps to a cloud platform like AWS, then the forwarded to the VANTIQ
platform automatically in the case of webhooks or on demand in the case of a data pull.

Webhooks can be configured the same way the REST HTTP/WSS connections are made. Refer above to REST
section for details needed to setup your webhooks.

A data pull usually involves creating a Rule that is periodically triggered by a Scheduled Event. The Rule will
invoke a Source, most commonly this is a REST call to an external system, with some query properties
indicating the data to retrieve.

A data pull may require some effort be put into a Rule before it will run properly. For example, if you need to
query the latest data by date/time stamp, it will be necessary to store the date/time from the last pull
attempt. It may be necessary to perform some de-duplication checks on records to avoid importing duplicates.

{ "op": "validate", "resourceName": "system.credentials", "object": "<YOUR-API-KEY>"};

And the next message sent would include the publishing resources.

{"op": "publish","resourceName": "topics","resourceId": "/topics/<LOCAL-TOPIC-NAME>",
"object":{<DATA-TO-SEND>};

Page 9
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Remember to setup a Scheduled Event that will publish to a Topic that triggers the Rule to run and perform
the data pull. Use a periodic timer that uses an interval that is in line with the expectations and requirements
of the end user.

Extension Sources
VANTIQ Extension Sources use WebSocket connections to stream data from external data sources into
VANTIQ. A Source is setup that contains all the configuration details for the connection so that when the
Extension Source is running the WebSocket will publish the stream of events to that Source. Extension Sources
are based on the VANTIQ Java SDK and examples can be found here:

https://github.com/Vantiq/vantiq-extension-sources

Viewing Incoming Data
While not required it is a good idea to setup a Subscription to view the incoming data before its applied to the
App Builder. This way you can verify the incoming data is arriving, connections are working and authentication
tokens have been correctly generated.

Subscriptions can be setup for Sources and Topics so that any of the connection methods described can be
used, including webhooks and data pulls.

Once data is arriving and is visible form the Subscription it will be possible to view the data structures for the
incoming sensor data which is used in the sensor configuration and use the Create Data Type button to setup
a timeseries database to store the history of that sensors readings.

App Builder
Once data is arriving on the platform a user can log into the run time client and access the Back-To-Work
client to configure buildings, floors, spaces, assets and sensors.

Data will not appear in the Back-To-Work client and rules will not yet be triggered until a VANTIQ App is
created that will process the incoming data sources, update the sensors type and trigger collaborations based
on the sensors rule configurations.

Here is an example of an App that is monitoring a sensor that indicates volume levels in a hand sanitizer
station.

Page 10
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Figure 3 - Example App That Monitors a Volume Sensor in a Hand Sanitizer Station

In this diagram, the initiate step called DeviceData is configured for the Source or Topic where the sensors are
publishing data. If there is a data pull being performed, then the results of the pull can be published to an
internal topic or inserted into a Type and that would be used in the DeviceData configuration.

The SaveToType activity pattern is required for each sensor or device that has unique requirements. A thermal
camera that performs temperature scans would require a second App that processes the thermal camera data
stream with separate dwell or threshold filters to identify situations.

Page 11
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Rules
When a user sets up a sensor in the Back-To-Work client, a rule can be optionally defined. The rule values can
then be applied to the filter activity patterns like Threshold or Dwell. If the user goes back and changes the
values in the rule, those values would be applied automatically in the App when the next reading arrives.

Here is an example of a rule definition a user can input when setting up a sensor.

The user can define the name of the rule such as “low” or “full” which indicates the volume levels in the hand
sanitizer. Then the user can provide the condition that determines the low and full volume levels, in this
example the operator lte (less than equal) and gte (greater than equal) to a numeric value. These values
represent the volume percent which is provided by the sensor itself with low being 29 or lower and full being
90 or higher.

When developing the App, you can use appCondition.evaluteConfig procedure to access the rule values. Here
is an example view of the hand sanitizer app’s Under30Percent Threshold filter.

{
 "display": {
 "page": "GaugeDisplay",
 "config": {
 "minimum": 0,
 "maximum": 100,
 "lowZones": "0:30",
 "lowColor": "#ff0000",
 "mediumZones": "30:50",
 "mediumColor": "#ffff00",
 "highZones": "50:100",
 "highColor": "#00cc00",
 "title": "% Full"
 }
 },
 "rules": {
 "low": {
 "lte": 29
 },
 "full": {
 "gte": 90
 }
 }
}

Page 12
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Figure 4 - Setting Threshold Parameters

Condition: appCondition.evaluateConfig("low", event.val, event.sensors.config)

The condition looks specifically for the “low” setting in the sensor config. The Over90Percent would then look
for the full value as shown in this example:
appCondition.evaluateConfig("full",event.val, event.sensors.config).

Page 13
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

As a VANTIQ developer, it will be necessary for you to provide the rule details to the end user.

For example, if a new temperature sensor is added and the App will monitor high and low values then develop
a sensor configuration that the user can plug into the sensor when setting it up in the Back-To-Work client.

Skip down to the section on Visualization Plugins for instructions on setting the display values.

When adding a Dwell or a Threshold filter in the App builder, use the rule’s key name when running the
appCondition procedure to pull the associated value.

High Value: appCondition.evaluateConfig("high",event.val, event.sensors.config)
Low Value: appCondition.evaluateConfig("low",event.val, event.sensors.config)

The event.val input is the actual value provided by the sensor. Change this value to reflect your actual event
object or use a transformation to change it to match.

The event.sensors.config is a value provided by the enrich or cached enrich activity step. The enrichment uses
the sensorid to query the sensors Type. This contains the config settings for the sensor where the rules are
stored.

{
 "display": {
 "page": "",
 "config": {}
 },
 "rules": {
 "low": {
 "lt": 5
 },
 "high": {
 "gt": 190
 }
 }
}

Page 14
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Figure 5 - Enrichment configuration of the sensors table will be the same for all apps. Use transformations to get id and type placed properly.

The appCondition.evaluateConfig procedure will return true or false based on the evaluation of the sensor
value and the rule condition. If true, the event moves downstream and executes the next step in the App
builder.

Procedures
The procedures written in the Back-To-Work Accelerator are meant to be very reusable from both inside th
VANITQ platform and as well as outside. All procedures in VANTIQ double as API calls that are accessible
outside of VANTIQ. These procedures could be used to create custom front ends, external dashboards and
reports, or integrations into other third-party applications or platforms.

Procedures use a common naming convention. The procedure name is prefixed based on where in VANTIQ it
is being used. App Builder procedures will begin with “app.<procedurename>” and Client Builder procedures
begin with “cb.<procedurename>”. Procedures that begin with “dashboard.<procedurename>” are used to
populate the Issues table on the Home/Start page of the Back-To-Work Accelerator. Collaborations will begin
with “collab.<procedurename> and there maybe additional prefixes or potentially no prefix at all for some
procedures, which will often indicate it is used commonly across the platform.

The Client Builder procedures cb.<procedurename> are the only procedures provided as part of the
accelerator. However, examples of app, dashboard and collab procedures will be provided.

Procedure names attempt to be as self-descriptive as possible, for example the cb.deleteAsset is used in the
Client Builder to delete an asset. The first letter in the procedure name is always lower case followed by upper
case for any remaining words.

Client Builder Procedures
cb.adjustTheme Used by the Organization à Theme page to make changes to the Back-To-

Work theme. Adjusts colors and logo.
cb.findSpaceForAsset Finds the closest space for an asset. This calculation uses the assets.fplocation

value, which is updated with each sensor reading that contains a location, and

Page 15
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

compares it to all the spaces on the floor to determine the closest one. An
RTLS system using indoor tracking can also provide the closest space as part
of the sensor reading. When that is the case this procedure can also be used
in simulations.

cb.getAssetTypes Queries all the records in assettypes.
cb.getAssetById Queries one specific asset by id.
cb.getAssetForSensor Queries a specific sensor by id and uses the result to query a specific asset by

the sensors.assetid field.
cb.getAssetTypes Queries all the assettypes, sorts results alphabetically by name.
cb.getAssets Queries all assets.
cb.getAssetsForFloor Uses a Floor id and a Building id to return a list of every asset associated with a

floor.
cb.getBuildingById Queries a single building by its id.
cb.getBuildingForSpace-
BySpaceId

Nested query, first fetches one specific space by id, then one specific floor by
spaces.floorid and then one specific building using floors.buildingid.

cb.getBuildings Queries for all buildings by organization id.
cb.getCollabContext Queries a specific collaboration id and returns an array of entities associated

with the collaboration. Entities provide the context for the collaboration such
as space, floor, building, asset id’s.

cb.getDashboardData Provides the number counts on the Home page for buildings, floors, assets,
sensors, ect.

cb.getFloorById Queries for a specific floor by its id
cb.getFloorForSpaceBy-
SpaceId

Nested query returns one specific Floor by querying the space first by its id.

cb.getFloorPlansBy-
BuildingId

Queries a specific floorplan using a building id.

cb.getFloorplan-ByFloorId Nested query that uses a floor id to return a specific floor plan.
cb.getFloorsForBuilding Returns an array of all floors for a specific building id.
cb.getHierarchyForAsset-
ByFloorId

Queries a specific building using a floor id.

cb.getHierarchyForAssets-
BySpaceId

Nested query that starts with the spaceid and then returns the space, floor and
building details in a single object.

cb.getOpenIssues Procedure used by the Home/Start page to populate the Issues table. This
procedure will query the list of procedures for all that begin with the word
dashboard. The dashboard procedures must be added before any issues can be
returned. More details in the Dashboard and Issues section.

cb.getOrganization Returns the organization name. Assumed just one organization exists.
cb.getPersonnel Returns a list of all personnel, used to populate the View Users table, sorted by

lastname.
cb.getRoles Returns a list of all Roles sorted by name, used in the View Roles table.
cb.getSensorId Queries for a specific sensor by its id.
cb.getSensorByIdAndType Queries for one specific sensor using two conditions id and type.

Page 16
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

cb.getSensirConfigById Queries for exactly one sensorconfig by id. Will generate an error if no result is
found.

cb.getSensorConfigs If a sensortype name is provided will return all sensors of that type, if no type
name is provided will return all sensor types sorted by the type name.

cb.getSensors Returns a list of all sensors sorted by type.
cb.getSensorTypes Returns a list of all sensortypes sorted by name
cb.getSensorForAsset Returns a list of all sensors associated with a specific asset, sorted by type.
cb.getSpaceById Queries a specific space by id.
cb.getSpacesForFloor Queries a list of spaces by floor id.
cb.getTheme Parses the Back-To-Work client to determine the current Theme settings, color

selections and logo.

App Builder Procedures
These are procedures used in the App Builder to provide customized activities. Since no Apps exist in the
default accelerator, no app builder procedures will exist either.

The following example applies to the Hand Sanitizer App which takes as input the event object, looks for open
collaborations associated with the device, and closes the collaboration if it exists.

A procedure like this can be easily modified to support a number of use cases and is useful to automatically
close a collaboration when sensor readings return to normal instead of having a user manually close the
collaboration.

Dashboards and Issues
The Home/Start page in the Back-To-Work client will perform a lookup of open Collaborations using
procedures prefixed with the “dashboard.<procedurename>” naming convention.

PROCEDURE app.closeCollabForHandSanitizer(event Object)

SELECT ONE FROM sensors WHERE id == event.id
SELECT ONE FROM system.collaborations as collab
 WHERE name == "HandSanitizerRefill" AND
 status == "active" AND
 entities.sensor == "/sensors/" + sensors._id

if (collab){
 CollaborationUtils.closeCollaboration(collab.id)
}

return event

Page 17
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Each sensor type can be used to initiate collaborations that all have different data values and intents. The
dashboard procedure will allow each type to be queried separately and formatted to specifically show results
in the Issues table that are relevant.

The example query in the appendix will return all open Hand Sanitizer collaborations and apply the contents to
a template for display in the Issues table. Go To the Dashboard for Hand Sanitizer.

The template referenced in the Procedure, which is used to format the results into HTML tags used by the
DataTable, was added as a text document under the path “/templates/dashboardhandsanitizer”.

The dashboard procedure will perform a substitution of all the ${variablenames} using a system procedure
called generateResource. The input values are the text to scan (the template file) and a JSON document
containing the field names and the replacement values.

For example, to replace ${buildingname} with the name of a building, run the following in a procedure:

var text = "${buildingname}"
var sub = {buildingname: "Corporate Headquarters"}
var result = generateResource(text, sub)

Result will be "Corporate Headquarters" The dashboard example performs the same task, only the template is
stored as a text file in Documents to make it easier to author.

Other Procedures
appCondition.evaluateConfig This procedure is used in App builder filters like Threshold, Dwell,

Filter to read the user defined rule conditions for that sensor.
generateResources System procedure used to perform a find and replace on

${<name>} tags.
utility.removeSensorsWhereTypeEmpty Deletes all sensors with a null type.

<p>Hand sanitizer station needs refill</p>
<p>Building: ${buildingname}</p>
<p>Floor: ${floorname}
</p>
<p>Asset</p>

 Name: ${assetname}
 Type: ${assettype}

<p>Sensor</p>

 Name ${sensorname}

 Type ${sensortype}

Page 18
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Collaborations
Collaborations can be built to utilize all the available data Types and use Entity Roles to provide references in
the collaboration with values to the building, floor, space and asset. This data will not be included as part of
the sensor reading that initiates the collaboration so the entity roles will need to be assigned the correct
values.

One way to do this is to execute a procedure that returns the entity role values and then assign the value to
the entity. Here is how:

1. Setup the list of Entity Roles that correspond to the data types in the Back-To-Work Accelerator.

2. Execute a procedure that will use the id of the item that triggers the collaboration. This will likely be
the sensors id value. The example procedure below will run a query against each data Type:

Page 19
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

3. Tne last step is to create Assignment activities for each of the data Types. Use the output of the parent
step, in the example shown its GetSpatialHierarchy, as the assignment value (expression) in the
runtime params: collaboration.results.GetSpatialHierarchy.result.spaceREF

Do this for each type substituting in the correct runtime value such as buildingREF or floorplanREF.

This will provide the collaboration the context it needs, for example, to know its location inside the building.
This will be useful when creating collaborations that require the location of the entity. This collaboration

PROCEDURE collab.getHierarchyFromSensorId(id String, type String)
var obj ={}
SELECT ONE FROM sensors WHERE id == id AND type == type
obj.sensorREF = {_id:sensors._id}
SELECT ONE FROM assets WHERE id == sensors.assetid
obj.assetREF = {_id:assets._id}
SELECT ONE FROM floors WHERE id == assets.floorid
obj.floorsREF = {_id:floors._id}
SELECT ONE FROM floorplans WHERE id == floors.floorplan
obj.floorplanREF = {_id:floorplans._id}
var space = findSpaceForAsset(floors.id , assets.fplocation)
obj.spaceREF = {_id:space._id}
SELECT ONE FROM buildings WHERE id == floors.buildingid
obj.buildingsREF = {_id:buildings._id}

return obj

Page 20
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

might used be to dispatch a field service worker to a broken item, a security guard to an intruder, or a member
of the hospital staff to a wheelchair needed by a patient.

As sensor readings continue to arrive, the location of the asset my change. The collaboration’s entities should
be updated to reflect the latest readings so that a moving wheelchairs current location can always be correctly
determined.

This will require running a procedure from the App itself. The collaboration will not update automatically from
a new reading as the entity constraint is designed to prevent original situation details from changing. A new
step will need to be added to the App Builder which can update the collaborations entities with the latest
readings. Go to Update Collaboration with Latest Location for an example of how to code this.

Visualization Plugins
The Back-To-Work Accelerator is meant to be modified and provides the ability to simply and easily create
new pages for the Back-To-Work client. These pages can be used to display sensor values or produce
statistical and historical reports.

Refer back to the sensor type configuration where a display value can be provided.

{
 "display": {
 "page": "GaugeDisplay",
 "config": {
 "minimum": 0,
 "maximum": 100,
 "lowZones": "0:30",
 "lowColor": "#ff0000",
 "mediumZones": "30:50",
 "mediumColor": "#ffff00",
 "highZones": "50:100",
 "highColor": "#00cc00",
 "title": "% Full"
 }
 },
 "rules": {
 "low": {
 "lte": 29
 },
 "full": {
 "gte": 90
 }
 }
}

Page 21
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

The display properties contain a pair of values called “page” and “config”. The page can be used to reference a
new page that is added to the Back-To-Work client. The config settings are used to specify settings to apply to
a widget on the display page.

The example provided uses a page called “GaugeDisplay”. When a user is viewing a sensor and clicks on the
“View” button for that sensor to see the latest value, a pop-up page will load this “GaugeDisplay: page.

Figure 6 - Sensor Gauge

In this example the gauge widget is displayed in the popup page and the “config” settings are used to provide
custom settings for the gauge widget. This allows a user to modify the High, Med, Low and Title values that
can then be applied to other types of sensors that measure at different scales.

The sensor Type stores this value in the config property field so when the sensors list is loaded, the
configuration for the sensor is included. When a user clicks on the View button for the sensor, if there is an
associated page, it will load that page with the parameters objects for the clicked row. On the popup page you
can then modify the widget using the values that are provided in the parameters. Here is sample code that is
placed into the pages On Start code area using the gauge widget:

 var gauge = client.getWidget("Gauge1");
 gauge.maximum = parameters.config.display.config.maximum;
 gauge.minimum = parameters.config.display.config.minimum;
 gauge.lowColor = parameters.config.display.config.lowColor;
 gauge.lowZones = parameters.config.display.config.lowZones;
 gauge.mediumColor = parameters.config.display.config.mediumColor;
 gauge.mediumZones = parameters.config.display.config.mediumZones;
 gauge.highColor = parameters.config.display.config.highColor;
 gauge.highZones = parameters.config.display.config.highZones;
 gauge.title = parameters.config.display.config.title;

Page 22
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

The gauge will be reconfigured based on the user defined configuration parameters. This approach can be
applied to other widgets using the same approach.

Be sure to provide your Back-To-Work users with the list of fields that can be used in the config section and
the page name.

Appendix
Changing Existing Schema’s
It is not recommended that the pre-existing Type schema’s are changed. Renaming a field in the sensors Type
or another Type will likely break functionality in the Client. This will apply to data streams, data objects and
the many of the Client Builder procedures that may be used.

New properties can be added to the Type but may require changes to different Insert or Update’s if the
expected list of fields used in a SaveToType activity do not match.

New Types can be easily created and will not impact existing clients, apps, or procedures. When possible, it is
recommended to setup new types to store additional information which are referenced by the pre-existing
ones. A sensorhistory Type could be added to store the history of the Hand Sanitizer sensor readings. The id
value stored in the sensorhistory Type can match the id value in the sensor Type so that historical queries can
be easily executed to populate a graph or chart.

Code Examples

Dashboard for Hand Sanitizer
The following procedure shows how to retrieve any open issues generated by rules associated with a hand
sanitizer sensor.

Page 23
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

 PROCEDURE dashboard.getOpenHandSanitizerIssues()
var results = {}
var issueCount = 0
var issues = []
var data = []
SELECT FROM system.collaborations AS collab WHERE status == "active" AND name == "HandSanitizerRefill"{
 var issueObj={}
 if (has (collab.results, "Status")){
 issueObj.state = collab.results.Status.assignedValue
 } else {
 issueObj.state = "Open"
 }
 issueObj.issuetype = collab.name
 var obj = {}
 var template = getDocument("templates/dashboardhandsanitizer")
 var replace = {}
 SELECT ONE FROM sensors AS sensor WHERE id == collab.results.Initiate.event.id
 if (sensor){
 obj.sensor = sensor
 obj.sensorname = sensor.id
 obj.sensortype = sensor.type
 issueObj.sensortype = sensor.type
 issueObj.d = sensor.id
 issueObj.sensorconfig = sensor.config
 SELECT ONE FROM assets AS asset WHERE id == sensor.assetid
 obj.asset = asset
 if (asset){
 issueObj.assettype = asset.type
 obj.assettype = asset.type
 obj.assetname = asset.name
 SELECT ONE FROM floors AS floor WHERE id == asset.floorid
 obj.floor = floor
 if (floor){
 issueObj.floorname = floor.name
 obj.floorname = floor.name
 SELECT ONE FROM buildings AS building WHERE id == floor.buildingid
 obj.building = building
 obj.buildingname = building.name
 issueObj.buildingname = building.name
 issueObj.geo = building.geo
 }
 }
 }
 issueObj.description = generateResource(template, obj)
 push(issues, issueObj)
 push(data, obj)
 issueCount++
}
results.issueCount = issueCount
results.issues = issues
results.data = data

return results.issues

Page 24
VANTIQ Accelerators VANTIQ.com

Copyright © 2020 VANTIQ. All Rights Reserved.

Update Collaboration with Latest Location

PROCEDURE app.updateSensorAndAssetLocation(event Object)

var loc = {
 "type": "Point",
 "coordinates": [event.y, event.x]
}

var sensor = SELECT ONE FROM sensors WHERE id == event.id and type == "IndoorLocation"

if (sensor){
 var data = {}
 data.type = "GeoJSON"
 data.value = loc

 UPSERT sensors(id:event.id, type:sensor.type, data:data)

 // assets also have a floorid (floor) and fplocation (floorplanlocation)
 // we'll update these as well

 var asset = SELECT ONE FROM assets WHERE id == sensor.assetid
 if (asset){
 UPSERT assets(id:asset.id, floorid:event.floorid, fplocation:loc)
 }

}

SELECT FROM system.collaborations AS collab WHERE name == "PatientTransport" AND status == "active" AND
entities.tsensor == "/sensors/"+ sensor._id{
 event.collaborationId = collab.id
 PUBLISH event TO TOPIC "/indoortracking"
}

var history = {}
history.id = uuid()
history.sensorid = event.id
history.floorid = event.floorid
history.timestamp = now()
history.x = event.x
history.y = event.y

INSERT trackinghistory(history)

return event

